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Traumatic brain injury and
post-injury sleep fragmentation
differentially alter the
microglial transcriptome

Morgan A. Taylor***!, Rebecca Boland“**', Samuel Houle"**?,

Zoe M. Tapp™**®, Amara C. Davis***, Christopher Cotter"*?,
John F. Sheridan®?, Jonathan Godbout***
and Olga N. Kokiko-Cochran****

‘Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United
States, 2Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United
States, *Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States

Introduction: Traumatic brain injury (TBI) is a global source of injury-related
death and disability, and survivors often suffer functional and psychiatric
consequences that persist for years. Neuroinflammation, mediated in part by
microglia, perpetuates chronic dysfunction after TBI and leaves survivors
vulnerable to the effects of secondary immune challenges. Previous data from
our lab shows that 30 days of mechanical sleep fragmentation (SF) aggravates
microglia- associated neuroinflammation in C57BL/6 mice, impairing recovery
after TBI.

Methods: To better understand the mechanisms through which microglia
contribute to impairment following post-TBI SF, we used flow cytometry to
analyze multiple cell types from brain and peripheral tissues of C57BL/6 mice
who received a TBI or sham injury followed by 7 or 30 days of SF or control
housing. Next, bulk RNA sequencing was used to analyze gene expression in
microglia and coronal slice from the ipsilateral brain. We analyzed differentially
expressed genes (DEGs) within each tissue type to determine how ipsilateral
brain and microglia are independently influenced by TBI and SF. We also
compared microglial DEGS directly to those of coronal slice, gaining novel
insight into how microglia contribute to dysfunction in the ipsilateral brain after
TBI and post-injury SF.

Results: Flow cytometry revealed transient increases in monocyte infiltration to
the brain 7 days post-injury (DPI) that resolved by 30 DPI. SF did not exacerbate
the immune response to injury within peripheral tissues or the brain at either of
these time points. From our transcriptomic analysis, we identified distinct sets of
DEGs which are uniquely dysregulated by TBI, SF, and the combination of TBI and
SF. Notably, we found distinct subsets of olfactory genes that are differentially
dysregulated by TBI and SF in the ipsilateral brain, as well as significant
enrichment of cell-cell communication and steroidogenesis pathways that are
specifically disrupted in microglia compared to the rest of the brain.
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Discussion: Through in-depth transcriptional analysis we identify potential
molecular targets that shed light on the mechanisms of TBI-induced microglial
activity and reveal how SF after TBI alters this response. Together, these data
could inform therapeutic strategies that target neuroinflammation to improve
chronic recovery after brain injury.
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1 Introduction

Traumatic brain injury (TBI) is a major source of injury-related
death and disability, affecting more than 20 million individuals
every year (1). Medical advances have led to a decline in TBI-related
deaths, but this contributes to a growing population of survivors
who suffer chronic injury-related consequences that can persist for
several years after injury. Many of these chronic issues are
perpetuated by neuroinflammation and mediated by microglia
(2-4). As the resident immune cells in the brain, microglia are
critical in maintaining homeostasis. After TBI, microglia mount a
rapid immune response, releasing cytokines and chemokines and
initiating important mechanisms of repair (5, 6). Some populations
of reactive microglia persist long after the initial injury response,
continuing to express cytokines and perpetuating a heightened
proinflammatory environment in the brain (7). This can lead to
more tissue damage and impaired functional recovery as
inflammation persists (8). Reactive microglia contribute to the
recruitment of peripheral immune cells, further exacerbating the
inflammatory environment in the brain (9). Work from our group
shows that some microglia can also transition to a primed state,
characterized by increased inflammatory markers such as MCHII
and CD68 (7). Primed microglia mount an exaggerated
inflammatory response to subsequent immune challenge, which
can exacerbate cognitive deficits and further impair recovery (10).
Experimental evidence demonstrates that forced turnover of
microglia after TBI alleviates behavioral and cognitive deficits,
highlighting the role of primed microglia in exacerbating post-
injury outcomes (11, 12). Altogether, these results pinpoint
microglia as a key player in the neuroimmune response to
brain injury.

Prolonged neuroinflammatory damage that perpetuates during
the chronic phase of injury provokes lingering dysfunction of stress
signaling (13-16). This leaves survivors susceptible to the negative
consequences of post-injury stressors that stimulate an immune
response. Importantly, TBI rarely occurs in isolation. Many
environmental stimuli, such as those experienced by TBI
survivors during recovery in a hospital or rehabilitation setting,
result in sleep loss (17). However, the neuroimmune effects of
environmental disturbances after TBI are not well defined. To
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study the influence of environmental stimuli that modify stress
signaling and sleep, we developed a model of post-TBI sleep
disruption using mechanical sleep fragmentation (SF) in adult
mice (18-20). We previously reported that 7 and 30 days of
post-TBI SF aggravates TBI-induced microglia reactivity and
neuroinflammation in stress responsive brain regions, resulting
in hippocampal-dependent cognitive deficits (19). Yet, the
combined and independent effects of TBI and SF on peripheral
immune cells and microglia at this chronic post-injury time point
remained unclear. TBI results in blood-brain-barrier disruption
and increased release of inflammatory cytokines and chemokines,
both of which facilitate infiltration of peripheral immune cells that
may distinctly shape the neuroimmune environment (21, 22).
Here, we complete a comprehensive analysis of the peripheral
immune response to TBI and SF using flow cytometry 7 and 30
days post-injury (DPI). We also define the transcriptional signature
of microglia and other brain cells using bulk RNA sequencing 30
DPI. Our goal was to define how TBI and post-TBI SF influence the
neuroimmune landscape, both independently and together. We
hypothesized that 30 days of post-injury SF would have a robust
impact on gene expression compared to TBI alone, and that
observed changes in the brain would be due to resident, central
immune cells rather than infiltrating peripheral immune cells. Flow
cytometry revealed transient increases in monocyte infiltration 7
DPI which resolved by 30 DPI. SF did not exacerbate injury-
induced responses within peripheral tissues or the brain at either of
these timepoints. Through our transcriptional analysis, we
identified distinct immune-related genes that are differentially
influenced by TBI and SF in the ipsilateral brain and in
microglia. Importantly, we make direct comparisons between
microglial and brain gene expression, informing how TBI- and
SF-induced microglial changes contribute to changes in the
ipsilateral hemisphere as a whole. Of note, distinct olfaction and
steroidogenesis pathways are differentially dysregulated by TBI and
SF, and multiple cell-cell communication pathway genes are
specifically disrupted in microglia after post-TBI SF compared to
TBI alone. Overall, these findings are an important step in
understanding TBI-induced microglial activity and characterizing
how post-TBI stressors, such as sleep disruption, influence the
neuroimmune response.
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2 Materials and methods

2.1 Mice

For all experiments, equal numbers of 8-10 week-old male and
female C57BL/6 mice were obtained from Charles River
Laboratories (Wilmington, MA). Mice were separated by sex and
group-housed in The Ohio State University Lab Animal Resource
(ULAR) facilities under conditions approved by the Institutional
Animal Care and Use Committee (IACUC) and in accordance with
the NIH guidelines for the Care and Use of Laboratory Mice. Mice
were provided ad libitum food and water access and were housed in
a 12h:12h light/dark cycle (lights on 6AM-6PM).

2.2 Surgery and lateral fluid percussion
injury

Established procedures were used for surgery and injury (19, 23,
24). For surgical preparation, anesthesia was induced with 4%
isoflurane gas, then maintained at 2% isoflurane for the duration
of the procedure. A 3mm craniectomy was trephined on the right
parietal bone, midway between bregma and lambda, to expose the
intact dura mater. A modified polypropylene needle hub with an
internal diameter of 3mm was fixed to the skull using super glue and
stabilized with dental acrylic. After surgery, mice recovered in their
home cages. The following day, anesthesia was induced using 4%
isoflurane gas for 4 minutes. For mice receiving a TBI, the hub was
attached to the FPI device, and a fluid pulse measuring 1-1.2 atm
was delivered onto the exposed dura mater. The hub was then
removed and the incision was closed. Sham mice were similarly
anesthetized and had hubs removed, but they did not receive FPI.
All animals recovered on a heating pad and latency to self-righting
reflex was recorded as a measure of injury severity.

2.3 Sleep Fragmentation

After injury, half of all mice were housed in SF chambers
(Lafayette Instruments), where a sweeper bar moved across the
cage bottom every 2 minutes daily from 6AM-10AM to
mechanically disrupt sleep at the beginning of the light cycle as
previously described (19, 25). SF occurred every post-injury day
6AM-10AM until tissue collection at 7 or 30 DPI. Control mice
were housed in the same room but were not exposed to mechanical
SE. Mice were provided food and water ad libitum and a 12h:12h
light/dark cycle (lights on 6AM-6PM) was maintained.

2.4 Flow cytometry

Mice were euthanized via CO, asphyxiation, after which whole
blood, bone marrow, spleens, and brains were collected 7 and 30
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DPI. Blood was collected with EDTA-lined syringes by cardiac
puncture into 1.5 ml Eppendorf tubes, placed on ice, and processed
as previously described (24). Red blood cells were lysed before
centrifugation of remaining cells. Supernatant was removed and Fc
receptors were blocked with anti-CD16/CD32 antibody. Cell pellets
were incubated with the following antibody solution: Ly6G (FITC;
BD Biosciences), Ly6c (PerCP-Cy5.5; Invitrogen), CD11b (APC;
Invitrogen), CD3 (APC-Cy7; BD Biosciences), and B220 (PE-Cy7;
BD Biosciences) for 15 minutes at room temperature. Cells were re-
suspended in PBS for analysis.

Bone marrow was collected from the femur and flushed out
using ice-cold PBS. Collected bone marrow was rinsed with PBS
and filtered through a 70-um cell strainer before being pelleted at
900 x g for 6 min. Cells were resuspended in PBS before being
incubated in following antibody solution: Fc receptor block (anti-
CD16/CD32), Ly6G (FITC), Ter119 (PE; BD Biosciences), Ly6c
(PerCP-Cy5.5), CD11b (APC), and B220 (PE-Cy7) for 15 minutes
at room temperature.

Spleens were collected immediately following CO, asphyxiation
and placed into PBS filled tubes on ice. Spleens were rinsed with
PBS and filtered through a 70 -pum cell strainer before being pelleted
at 900 x g for 6 min. Cells were resuspended in PBS before being
incubated in following antibody solution: Fc receptor block (anti-
CD16/CD32), Ly6G (FITC), Terl19 (PE), Ly6c (PerCP-Cy5.5),
CD11b (APC), B220 (PE-Cy7), and CD3 (APC-Cy7) for 15
minutes at room temperature.

Brains were divided into ipsilateral and contralateral
hemispheres before leukocyte isolation as previously described
(24). Brains were homogenized into 5 mL of PBS in a glass Potter
homogenizer before being transferred to a 15 mL conical and
pelleted at 900 x g for 6 minutes. Following supernatant removal
cell pellets were resuspended in 70% isotonic Percoll. A
discontinuous Percoll density gradient was then applied in three
layers: 50%, 35%, and 0% (PBS) isotonic Percoll. The gradient was
centrifuged for 20 min at 2070 x g with low acceleration and brake.
The layer containing fat debris and myelin was removed from all
tubes and leukocytes were collected from the interphase between
the 70% and 50% Percoll layers. The leukocyte layer was washed to
remove any remaining Percoll, cells were pelleted at 900 x g for 6
min, and supernatant was removed. After cell isolation, Fc receptors
were blocked with anti-CD16/CD32 antibody. Cells were washed
and then incubated in the following antibody solution: Lyé6c (PE;
BD Biosciences), Ly6G (FITC), CD45 (PerCP-Cy5.5; BD
Biosciences), CD11b (APC), CD3 (APC-Cy7), and B220 (PE-Cy7)
for 15 minutes at room temperature. Cells were re-suspended in
PBS for analysis. Previous studies have reported that viable cells
isolated by Percoll density gradient yields >90% leukocytes (26, 27).

Single stain reference controls were used for spectral unmixing
and autofluorescence removal. The flour-minus-one (FMO)
method was used to assess non-specific binding and positive
labeling for cell populations. Samples were run on the Cytek
Aurora 3 laser system for spectral flow cytometry analysis. Data
was analyzed using FlowJo software. Tissue collection was
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performed in two technical replicates (cohorts) for each group with
(N = 6) 7 DPI and (N = 5-6) 30 DPL

2.5 Fluorescence-activated cell sorting and
RNA isolation

All mice were euthanized by CO, asphyxiation and brains were
collected 30 DPI. Brains were first bisected and placed into a
stainless-steel coronal mouse brain matrix. Razor blades were
placed 2mm apart in the matrix, perpendicular to midline and
centered over the site of injury to collect a 2mm-thick coronal slice
from the ipsilateral hemisphere. The slice was snap frozen in liquid
nitrogen. CD11b" myeloid cells were isolated from the remainder of
the ipsilateral hemisphere via Percoll gradient, as previously
described (12, 26). Briefly, tissue was homogenized using manual
homogenizers, and the homogenate was centrifuged and
resuspended in 70% Percoll (Sigma-Aldrich). A discontinuous
Percoll density gradient was layered to collect CD11b" cells. To
isolate microglia from this cell layer, all cells were labeled were
CD45 and CD11b antibodies and sorted on a Cytek Aurora cell
sorter. CD11b*/CD45™ microglia were collected, and RNA was
extracted using PicoPure kit following manufacturer protocol
(ThermoFisher). RNA was isolated from ipsilateral coronal brain
slice tissue using Trizol following the Tri-Reagent protocol (Sigma-
Aldrich). Tissue collection and RNA extraction were performed in
three technical replicates (cohorts) for each group. RNA was
extracted from N = 7-9 mice total per experimental group.

2.6 Statistical analysis

For righting times and flow cytometry, statistical analysis was
completed within Prism 10.0.2 (GraphPad). For all experiments,
sample sizes were determined based on previous studies (12, 18, 19).
For righting time and flow cytometry data, 2-way analysis of
variance (ANOVA) was utilized with injury (Sham or TBI) and
sleep condition (Con or SF) as independent variables. Main effects
of injury and condition, along with interaction effects, were
considered. Tukey post hoc analysis was performed when
interaction effects were detected in experiments. All comparisons
with p < 0.05 were reported. For all experiments, researchers were
blinded to animal group identification during data analysis.

2.7 RNA sequencing and analysis

RNA-Seq libraries were prepared using the Ovation SoLo RNA-
Seq System, following manufacturer protocol (NuGEN). Libraries were
sequenced on Illumina NovaSeq, single-end 100 base pair reads, 40
million reads per sample. Reads were then mapped to the mouse
genome (assembly GRCm39) and gene-specific counts were generated
using STAR version 2.6.0 (28). Statistically significant (q <0.05, |
log,fold-change| > 2) differentially expressed transcripts were
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identified using DESeq2 (version 1.42.0). Protein-coding differentially
expressed genes (DEGs) were analyzed using Enrichr (E. Y. 29-31) and
ShinyGO (32).

3 Results

3.1 Post-injury SF does not significantly
exaggerate peripheral immune cell
populations at subacute or chronic
timepoints

Flow cytometry was used to define the distribution of peripheral
immune cells following TBI and SF 7 and 30 DPIL. Adult C57BL/6
mice received lateral FPI or sham injury, followed by 7 or 30 days of
either control housing or SF housing, with daily mechanical SF from
6AM to 10AM. Peripheral tissues, including blood, spleen, and
bone marrow, along with ipsilateral and contralateral brain were
collected at both 7 and 30 DPI immediately following the last cycle
of SF (Figure 1A). As expected, TBI caused significantly longer
righting times than sham injury (Supplementary Figure S1A) (18-
20). A posteriori analysis confirmed that righting time was similar
between sham and brain injured mice that subsequently received
control housing or SF (Supplementary Figure S1A).

Within the blood, bone marrow, and spleen, cells of interest
included monocytes (CD11b"Ly6c™, CD11b*Ly6c™), granulocytes
(CDIIb*Ly6GHi), B cells (B220™), and red blood cells (CD11b
Ter119%). At 7 DPI, a similar distribution of peripheral immune cells
was found in the bone marrow and spleen between experimental
groups (Figure 1). However, there was a TBI-induced increase in
monocytes (CD11b"Ly6¢") within the ipsilateral brain 7 DPI (Injury,
F(1, 18) = 14.76 p < 0.05; Figure 10). Other cells of interest in the
brain included microglia populations defined as CD11b*CD45™
and CD11b"CD45™. Notably, highly reactive microglia and
peripheral macrophages are expected to be included in the
CD11b*CD45™ population. There were no significant differences
in reactive microglia/macrophages in either hemisphere 7 DPI.
However, there was a significant decrease in CD11b"CD45™
microglia in the contralateral hemisphere of TBI SF mice
compared to Sham Controls and TBI Controls, which was not
observed in the ipsilateral hemisphere (SF, F(1, 20) = 7.840, p <
0.05; Injury x SF, F(1, 20) = 4.470,p < 0.05; Figure 1S).

To determine the role of peripheral immune cells in the chronic
immune response to TBI and SF, the same tissues and cell
populations were analyzed 30 DPI. Here, TBI increased the

presence of granulocytes and Ly6c™

monocytes within the bone
marrow (Supplementary Figure S2; Injury, F(1, 17) = 5.752, p <
0.05; Supplementary Figure S2E; Injury, F(1, 17) = 6.895, p < 0.05;
Supplementary Figure S2G). Notably, this response was largely
driven by brain injured animals in control housing. A similar
distribution of peripheral immune cells was found in the spleen
and blood between experimental groups 30 DPI. Within the brain,
there were no significant differences in monocyte or microglia

populations in either hemisphere chronically post-injury
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(Figure 2). This suggests that differences in microglia and
monocytes 7 DPI represent transient changes driven by TBI and
TBI-SF that resolve over time. Interestingly, there was a SF-driven
increase in granulocyte populations 30 DPI, though this change was
only observed in the contralateral hemisphere (SF, F(1, 17) = 4.942,
p < 0.05; Figure 2I).

This comprehensive flow cytometric analysis confirms that
post-injury SF does not exaggerate the peripheral immune
response 7 and 30 DPI. Specifically, these analyses show no
significant infiltration of peripheral monocytes into the brain due
to TBI or SF at 30 DPI (Figure 2). These data also confirm no
significant effects of injury or SF on proportion of microglia in the
ipsilateral brain 30 DPI (Figures 2F-H). This is relevant because
monocyte derived macrophages and highly reactive microglia
express similar genes and proteins, making it difficult to
distinguish the cell types with other conventional methods.
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3.2 Using bulk RNA sequencing to analyze
microglia-specific effects of TBI and SF on
gene expression 30 DPI in the ipsilateral
brain

Previous data from our lab indicate persistent microglial
activation and significantly increased pro-inflammatory gene
expression in the ipsilateral cortex 30 DPI (19). We therefore
hypothesized that the RNA profiles of microglia and other brain
cells are uniquely dysregulated by TBI and post-injury SF,
independent of peripheral immune cell infiltration. To test this,
mice were exposed to either control housing or our established SF
protocol for 30 days following sham injury or TBI. Consistent with
previous studies, mice that received TBI had significantly longer
time to right than sham mice (18, 20, 24) (Figure 3B). Brain tissue
was collected 30 DPI, and we used RNA-sequencing to analyze
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DEGs of sorted microglia from the ipsilateral hemisphere and an
ipsilateral coronal brain slice (Figure 3A). The primary goal was to
identify the individual and combined effects of TBI and SF on gene
expression, emphasizing the specific impact on microglia by
comparison to coronal slice tissue, representative of multiple
brain cell types. CD11b+/CD45™ microglia were selected for
these experiments to reduce the potential influence of monocyte
derived macrophages on gene expression signatures. Additionally,
we compared microglial gene expression directly to that of brain
tissue to identify unique effects of TBI and SF in microglia
compared to all ipsilateral brain cell types. For each tissue type,
total RNA was isolated and sequenced, and transcriptomes for each
experimental condition (TBI Con, TBI SF, and Sham SF) were
compared to control (Sham Con) (Figure 2A). For analysis, we
narrowed our scope to the top significantly dysregulated (q <0.05
and |log2fold-change| >2) differentially expressed genes (DEGs) in

each experimental condition.

3.3 TBI and SF differentially affect
olfaction-related genes in ipsilateral brain
tissue 30 DPI

We first investigated the effects of TBI and SF on gene expression
in the ipsilateral brain (Figure 4). To identify effects of TBI, we
focused on DEGs in the TBI Con group and genes dysregulated by
both TBI SF and TBI Con, excluding all DEGs in the Sham SF group
(Figure 4B). We identified a total of 250 DEGs affected by TBI in
ipsilateral brain, 51 of which were protein-coding genes (Figures 4A,
B). Gene set enrichment analysis revealed chemokine, allergy, and
asthma-related pathways in these DEGs (Figure 4B). To determine
the effects of SF, we analyzed genes dysregulated by Sham SF and TBI
SF and excluded all genes dysregulated in the TBI Con group
(Figure 4C). There were 314 DEGs affected by SF in ipsilateral
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brain, with 68 of these encoding for proteins (Figure 4C). Our gene
set enrichment analysis identified significant pathway enrichment
for olfactory transduction (KEGG database, 11 pathway genes), and
no other pathway enrichment was found in this gene set.
Interestingly, 9 out of the 11 olfaction-related genes were
significantly downregulated (log2fold-change < -14, q <0.05) by
SE. It is worth noting that many olfaction-related genes in brain
tissue were significantly dysregulated by TBI, though this did not
correspond to olfactory pathway categories in our enrichment
analysis (Figure 4D). Enrichment analysis revealed that protein-
coding DEGs from TBI SF brain tissue were also enriched for
olfactory transduction (KEGG database, 11 pathway genes). 10 of
the 11 genes were significantly upregulated, in contrast to the SF-
induced downregulation of other olfaction-related genes. Similarly,
TBI alone caused significant upregulation of another set of olfactory
genes (Figure 4D). Together this suggests that TBI and SF have
opposing effects on olfaction-related genes in the brain. SF causes
significant downregulation of a set of olfactory genes, while TBI, with
or without post-injury SF, upregulates an entirely different set of
olfaction-related genes.

To determine how TBI and SF interact to affect gene expression
in the ipsilateral brain, we focused only on those genes which are
uniquely dysregulated in the TBI SF group and have no overlap with
TBI Con or Sham SF (Figure 4E). This gene set comprised 189 total
genes, including 41 protein-coding genes (Figure 4E). Several
immune-related pathways were enriched in the protein-coding
DEGs of TBI SF brain tissue, including the alternative
complement pathway and NF-kB. IL-6 signaling was also
influenced by TBI SF, namely through significant downregulation
of the mucin gene Muc5ac (log2fold-change = -17.34), a direct
target of IL-6. One of the most upregulated genes in TBI SF brains
was Il17f, which encodes an IL-17 pro-inflammatory cytokine
family protein (log2fold-change = 18.7 in TBI SF, q = 0.001), and
this was not dysregulated by either TBI or SF alone (log2fold-
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change = 0 in TBI Con; log2fold-change = 0 in Sham SF). This
suggests that some cytokine signaling pathways in the brain,
including IL-17 and IL-6, are uniquely influenced by the

combination of TBI and SF.

3.4 TBI and SF differentially dysregulate

microglial steroid biosynthesis processes

30 DPI

We next analyzed the effects of TBI and SF specifically on gene
expression in ipsilateral microglia (Figure 5A). We identified 132
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DEGs, including 34 protein-coding genes, with significant TBI-
induced expression changes in microglia (Figure 5B). Enrichment
for the TAp63 tumor suppression pathway, as well as several
pathways related to corticosteroid synthesis and function, were
identified within these genes (Figure 5B). A total of 133 DEGS,
including 36 protein coding genes, were significantly dysregulated by
SF in microglia. Enrichment analysis suggests disruption of a variety
of pathways, including lipid metabolism and transmembrane
transport. Interestingly, steroid hormone biosynthesis was one of
the top pathways dysregulated by SF (Figure 5C). This is similar to
the enrichment categories for microglial TBI DEGs, but through
dysregulation of different genes. CyplIbl, encoding a steroid
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hydroxylase, is significantly (log2fold-change = 16.46) upregulated in
microglia of TBI Controls (Figure 5B). A different hydroxylase gene,
Cyp7al, is dysregulated by SF in microglia (Figure 5C). Interestingly,
Cyp7al is significantly downregulated in both Sham SF and TBI SF
-21.2 and -22.11, respectively). This
suggests that distinct steroid biosynthesis pathways are differentially
dysregulated by TBI and SF in microglia.

To explore the combined effect of TBI and SF on microglial

groups (log2fold-change =

genes, we next focused on genes uniquely dysregulated in the TBI
SF group. There were a total of 111 microglial DEGs in this group,
38 of which were protein-coding genes. Enrichment analysis
highlighted several immune-related processes, including
iscosanoid transport and lymphocyte chemotaxis (Figure 5D).
Several genes related to the oncostatin M pathway, involved in
IL-6 signaling, are dysregulated in microglia (33). This includes
upregulation of Ch25h, Cypla2, and Slc22a7, and downregulation of
Saal (Figure 5D). These data suggest differential effects of post-TBI
SF on immune pathways, including IL-6 signaling, in the microglia
compared to the whole brain.
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3.5 Microglia exhibit TBI-induced
dysregulation of innate immune and
acetylcholine receptor pathways compared
to whole brain 30 DPI

Importantly, the brain tissue analyzed in these experiments
contains multiple cell types, including microglia. Thus, to more
closely dissect how microglial gene expression is influenced by TBI
and post-TBI SF, and to understand how microglial dysregulation
contributes to changes in the brain, we conducted a separate
analysis to compare microglia expression directly to that of the
ipsilateral brain (Figure 3A). This was accomplished by setting the
RNA profile of brain tissue for each experimental condition as the
baseline for comparison and measuring microglia differential
expression relative to the brain. This resulted in four sets of
DEGs, representing all four experimental conditions including
Sham Control (Supplementary Figure S3A). To control for
differential gene expression that could be due to any aspect of
surgery or isoflurane exposure, we subtracted any genes that
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overlapped with the Sham Control group, a total of 14,011 DEGs
(Supplementary Figure S3B). We focused the rest of our analysis on
significant DEGs in the TBI Control, TBI SF, and Sham SF groups
that did not have any overlap with Sham Control (Supplementary
Figure S3C).

We identified 924 DEGs significantly (q <0.05, [log2fold-
change| > 2) dysregulated by TBI, either in the TBI Con group or
in the overlap between TBI Con and TBI SF (Supplementary Figure
S3C; Figure 6A; heatmaps show subset of DEGs - top 59
downregulated (log2fold-change < -3) and top 41 upregulated
(log2fold-change >3) genes). A total of 306 of these DEGs were
protein-coding genes. Of these, 132 are upregulated and 174 are
downregulated. Gene set enrichment analysis of downregulated
DEGs revealed enrichment for a variety of pathways, including
immune-related alpha defensins and B cell stimulation.
Upregulated genes corresponded to other immune-related
pathways, namely the alternative complement pathway through

10.3389/fimmu.2025.1689773

upregulation of Cfb (log2fold-change = 5.4 in TBI Con, Figures 6B,
C). Additionally, enrichment analysis suggests upregulation of
acetylcholine receptor processes. Chrng and Chrne, both of which
encode for different subunits of the acetylcholine receptor protein,
are significantly upregulated in TBI Control microglia relative to
whole brain tissue (log2fold-change = 4.09 and 3.5, respectively).

There were a total of 857 DEGs significantly dysregulated by SF,
and 251 of these were protein-coding genes (Supplementary Figure
S3C; Figure 6D; heatmaps show subset of DEGs - top 54
downregulated (log2fold-change < -3) and top 33 upregulated
(log2fold-change >3) genes). 91 protein-coding DEGs were
upregulated and 160 downregulated by SF. Gene set enrichment
analysis revealed enrichment for several metabolism- and
catabolism-related pathways in downregulated genes. Upregulated
genes were enriched for multiple regulatory DNA pathways,
including DNA strand elongation and DNA replication
(Figures 6E, F).
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3.6 Post-TBI SF specifically affects
steroidogenesis and cell-to-cell
communication pathways in microglia
compared to whole brain 30 DPI

A total of 682 DEGs were significantly dysregulated by the
unique combination of TBI and SF in microglia compared to
ipsilateral brain (Supplementary Figure S3C, Figure 7A). 220 of
these DEGs encode proteins, with 55 upregulated and 165
downregulated genes. Within both up- and downregulated DEGs,
enrichment analysis indicates dysregulation of a variety of distinct
pathways, including two G-protein coupled receptor pathways in
upregulated genes and an Alzheimer’s-related CDK5 pathway in
downregulated genes (Figures 7B, C). Surprisingly, the most
significantly enriched pathway among downregulated genes
corresponded to ovarian infertility. This included significant
downregulation of Nr5al, Dmcl, and Cypl9al (log2fold-change =
-6.25, -3.08, and -4.83, respectively). Interestingly, Nr5al
(steroidogenic factor 1) and Cypl9al (aromatase) are both
implicated in steroid hormone synthesis. This suggests suppression
of steroidogenesis pathways in microglia, relative to the whole brain,
after post-TBI SF, in contrast to the upregulation of other steroid-
related pathways we found in microglia after TBI alone (Figure 5B).
Interestingly, cell surface interaction pathways appear in both up-
and downregulated DEGs (Figure 6C). The majority of genes
corresponding to these pathways are downregulated, including
Cdh5, Cldn3, Pard6a, Cdh24, and Mapkl2 (Figure 6B). This
downregulated gene set suggests dysregulation of cell-cell
communication in microglia compared to the ipsilateral brain, and
could reflect structural and functional changes undergone by
microglia when TBI is combined with post-injury SF.

4 Discussion

Previous work from our lab showed that both 7 and 30 days of
post-injury mechanical SF induces microglial morphological
restructuring, increasing neuroinflammation and impairing
behavioral outcomes compared to TBI alone (19, 24). Blood-
brain-barrier (BBB) disruption after TBI contributes to peripheral
immune cell infiltration to the brain (9, 21, 22, 34).Reactive glia can
also recruit peripheral immune cells to the central nervous system
to help respond to injury by releasing inflammatory cytokines and
chemokines and assisting with debris clearance (9, 34, 35).
Therefore, peripheral immune cells play a critical and possibly
distinct role in shaping the neuroimmune response to TBI as well as
post-injury SF. In this study, we investigated the independent and
combined effects of TBI and post-injury SF on the neuroimmune
landscape. We analyzed the distribution of peripheral immune cells,
resident macrophages, and microglia using flow cytometry. We also
measured transcriptional changes in a coronal brain slice and sorted
microglia using bulk RNA sequencing. We hypothesized that post-
TBI SF would have a robust influence on the ipsilateral
transcriptome 30 DPI. Indeed, we found that SF and TBI both
induce significant dysregulation of a variety of transcripts in the
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brain and specifically in microglia. Further, the combination of TBI
with post-injury SF alters the microglia and brain transcriptome
significantly, compared to TBI alone.

Several findings warrant further discussion. Previous preclinical
studies consistently demonstrate that peripheral immune cells are
actively responding to brain injury during the acute phase (i.e. ~1-3
DPI) of recovery (36, 37). Detection of peripheral immune cell
trafficking and brain infiltration declines in the subacute and
chronic phases of recovery (38). Here, there were no significant
differences in monocyte or granulocyte populations in any of the
peripheral tissues 7 DPI. TBI caused a significant increase in
ipsilateral cortical monocytes 7 DPI, though this resolved by 30
DPI. There was a TBI-induced increase in granulocytes within the
bone marrow 30 DPI, but there were no changes in peripheral
immune cell populations within the blood or spleen 30 DPI. While
these results could reflect chronic alterations in post-injury
myelopoiesis, further assessment is needed to understand this
chronic shift in the bone marrow. SF caused an increase in
granulocytes and neutrophils in the contralateral brain 30 DPI,
but this was not detected in the ipsilateral hemisphere. Multiple pre-
clinical studies across different injury models demonstrate robust
immune cell infiltration early (4 hours - 3DPI) in the response to
TBI (39-41). This may be due in part to robust BBB disruption that
is seen acutely post-injury in pre-clinical models (42-45). However,
similar studies show no significant differences in circulating
immune cell populations in the blood or infiltrating immune cells
in the brain 7 DPI (46-48). While the peripheral immune response
at chronic post-injury timepoints after FPI has not been fully
characterized, there is support that peripheral immune cell
populations are reduced in the chronic phase post-injury in other
TBI models (49-51). Research from clinical studies has
demonstrated that BBB disruption can be long lasting (52-54).
However, these current findings suggest that BBB disruption may
subside following the acute phase of injury, as shown in previous
literature (55-57). Therefore, the results are in accordance with
existing literature and show that SF following TBI does not
exaggerate or prolong the peripheral immune response between
the sub-acute and chronic phases of recovery.

Our previous studies demonstrated that TBI and SF increased
percent area of Ibal7 and 30 DPI in the injured cortex (18, 19, 58),
which could result from microglial proliferation. There were no
differences in CD11b*CD45™ or CD11b*CD45™ brain populations
in the injured cortex 30 DPL This observation could tell us that the
microglial response to TBI and SF involves morphological
restructuring and not exclusive expansion of the microglia cell
population. Flow cytometry may mask region specific differences in
microglia that are better visualized with techniques such as
immunofluorescence. Nevertheless, flow cytometry is superior to
immunofluorescence in distinguishing monocytes, monocyte
derived macrophages, and microglia, which have similar expression
of key surface proteins such as CD11b and CD45. We expect that
monocyte derived macrophages as well as highly reactive microglia
are included in the CD11b*CD45™ cell population. Therefore, to
avoid the potential influence of infiltrating monocytes, we selected the
CD11b*CD45™" brain population for subsequent bulk RNA
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sequencing analysis. Our flow cytometry data revealed a significant

increase in monocyte populations in the ipsilateral hemisphere driven

by TBI 7 DPI. However, there were no significant changes between

our conditions in immune cell populations in the ipsilateral

hemisphere 30 DPI. These data demonstrate that peripheral
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immune cell infiltration 7 DPI was transient and resolved by the
chronic phase post-injury. Furthermore, we found no significant
differences in the proportion of CD11b"CD45™ cells between
experimental groups 30 DPI, which ensured consistency in the type
of cells that were collected for gene expression analysis. Thus,
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sequencing 30 DPI represents the ideal timepoint to understand
transcriptomic changes within microglia in the chronic phase of TBI.
TBI and SF induced robust dysregulation of brain and microglial
RNA. In brain tissue, olfactory receptor genes contributed to a large
portion of protein-coding DEGs in each experimental condition.
These receptors are largely expressed on olfactory sensory neurons
in the nasal cavity and nasal epithelium, where they function in
chemosensation as G protein-coupled receptors. However, mounting
evidence in mice and humans demonstrates their expression and
function outside of the olfactory system, including other neuron types
in the brain (59-61). Here, we present further evidence of olfactory
receptor expression in non-olfactory tissue. Interestingly, clinical
evidence indicates that alteration or loss of olfaction is an early
symptom of TBI, and multiple preclinical studies have investigated
the link between TBI and olfaction (62-65). Controlled cortical
impact TBI in mice caused microglia-mediated inflammation
resulting in neuronal deficits in the olfactory bulb (62). Neurons
from the olfactory bulb project to other brain regions to relay sensory
information, and impaired olfactory neuron function could impact
other neuron types through this network. Additionally, recent
evidence from clinical serum samples showed release of extracellular
vesicles (EVs) containing mRNA of several olfactory receptors from
injured neurons after TBI, suggesting broad upregulation of
expression of olfactory receptor genes (66). Our findings here
support TBI-induced upregulation of these receptors, and our data
suggests differential effects of TBI and SF on olfactory receptor
expression in the brain. The effects of SF alone on olfaction are
understudied. Our results suggest that contrary to the effects of TBI,
SE downregulated a distinct set of olfactory genes. It will be necessary
for future studies to determine how these gene sets influence each
other, and whether TBI and SF interact to affect olfactory function.
While much of our analysis was focused on the differential
effects of TBI and SF, we also identified some interesting overlap.
Within microglia, we found that TBI and SF both affected steroid
synthesis pathways, but through dysregulation of different genes.
For example, two distinct hydroxylase genes, CypI11b1 and Cyp7al,
were differentially dysregulated by TBI and SF. Cypllbl was
significantly upregulated by TBI, while Cyp7al was
downregulated by SF. Cypl1bl encodes 11B-hydroxylase, an
enzyme required for glucocorticoid and mineralocorticoid
production (67). Clinical evidence demonstrates that TBI
stimulates immediate activation of the HPA axis stress response,
elevating serum cortisol levels within the first 24 hours following
injury (68, 69). By contrast, Cyp7al encodes cholesterol 7o-
hydroxylase, primarily studied for its role in bile acid synthesis in
the liver (70, 71). However, cholesterol homeostasis is important to
brain function, and similar cholesterol hydroxylases have been
shown to play a key role in these pathways (72). Cholesterol
dysregulation has been shown to impact microglia function, and
recent evidence suggests that cholesterol homeostasis is critical for
microglia-mediated repair in the contexts of Alzheimer’s disease
and multiple sclerosis (73, 74). The magnitude of downregulation
(log2fold-change -21.2 in Sham SF and -22.1 in TBI SF) of Cyp7al
in microglia after SF could reflect a significant loss of function.
Additionally, in our direct comparison of microglia gene expression
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to that of the brain, we identified other steroidogenesis genes that
were significantly downregulated following post-injury SF. These
data suggest that TBI induces upregulation of steroid pathway genes
in microglia, while SF downregulates other steroid pathways. When
TBI is followed by post-injury SF, further downregulation of
additional steroidogenesis genes occurs in microglia. Together,
this suggests that both TBI and SF affect steroid biosynthesis, but
likely through dysregulation of different pathways.

TBI induces an initial inflammatory response in multiple cell
types, including microglia (75, 76). The precise signaling pathways
involved vary from cell to cell and can depend on a variety of factors
including age, sex, and injury severity. The immune effects of TBI
become even more complex as the injury progresses to longer time
points and chronic neuroinflammation persists (4, 77). In our
analysis, we identified multiple immune-related genes that were
only significantly dysregulated by the combination of TBI and SF
and were unaffected by either TBI or SF alone. One of the most
upregulated genes in TBI SF brains was I117f, which encodes a pro-
inflammatory cytokine mainly secreted by helper T cells (78). We
did not detect T cell populations in our flow cytometry analyses of
the brain, but this data suggests increased expression of Il17f RNA
by one or more cell types in the ipsilateral hemisphere.

Pathway enrichment analyses suggest that IL-6 signaling was
influenced by post-TBI SF in both the brain and in microglia. IL-6 is
a key inflammatory cytokine released by multiple cell types, including
microglia and neurons, to promote neuron survival and repair after
TBI (79, 80). Previous studies demonstrate an acute increase in IL-6
after TBI, with significantly elevated gene and protein levels detectable
hours after TBI (81, 82). Due to the low physiological levels and rapid
release after injury, IL-6 has been explored as a potential biomarker for
TBL and elevated levels are correlated with worsened outcome after
injury (83, 84). Here, we did not detect any significant changes in II6
gene expression 30 days after TBI or SF. However, in brain tissue, we
found significant downregulation of a direct target of IL-6, Muc5ac.
This could reflect upstream changes in IL-6 signaling. Additionally,
TBI SF caused dysregulation of several components of the oncostatin
M (OSM) signaling pathway in microglia, including significant
upregulation of Ch25h, Cypla2, and Slc22a7, and downregulation of
Saal. OSM is a member of the IL-6 cytokine family and has previously
been shown to play a neuroprotective role in spinal cord injury and
multiple sclerosis (MS) (85, 86). Previous studies have shown that
microglia produce OSM in response to inflammatory signaling, and
elevated OSM is associated with neurological diseases including MS
and glioblastoma (87-89). Our results suggest alterations in the
microglial OSM signaling pathway after post-TBI SF, which could
reflect changes in OSM production.

When we compared microglia gene expression directly to brain
tissue, many of the top DEGs were related to cell-cell interaction
and communication processes. Most of these corresponded to
downregulated genes, including cadherins (Cdh5, Cdh24) and
claudin 3 (Cldn3), membrane proteins important for maintaining
cell-cell adhesion and morphology. Previous studies have
demonstrated downregulation of Cldn3 after hypoxia and
ischemia, causing blood brain barrier damage, and Cldn3 is also
implicated in impaired oligodendrocyte migration and function in
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white matter disease (90, 91). Less is known about the functions of
Cdh5 and Cdh24, though their expression has been reported in
multiple brain regions (92, 93). The specific role of these membrane
proteins in microglia has not been determined. Our findings here
suggest that genes encoding multiple of these cell-cell interaction
proteins are significantly downregulated in microglia compared to
other brain cells after post-injury SF.

4.1 Conclusions

The goal of this study was twofold: (1) To investigate how TBI
and post-TBI SF influence the peripheral and microglia immune
response 7 and 30 DPI and (2) to analyze how SF alters the effects of
TBI on whole brain and microglia gene expression at 30 DPL. While
TBI and post-TBI SF induced transient changes in microglia and
monocyte populations 7 DPI, modest effects of TBI and SF were
found 30 DPI. Specifically, the proportion of peripheral immune
cells and microglia were similar between experimental groups within
the brain 30 DPI. Our transcriptional analysis revealed that TBI and
SF differentially influence multiple biological processes in the brain
and microglia, including olfaction and steroidogenesis pathways.
Importantly, we found that TBI and SF combine to induce robust
gene dysregulation not influenced by TBI or SF alone. Our results
shed light on potential molecular mechanisms of microglia-mediated
dysfunction after post-injury SF. It is worth noting that specific sub-
clusters of microglia were not identified in this bulk RNA sequencing
analysis. Bulk RNA sequencing provides insight to broad trends in
microglia expression, this approach may not be sufficient to capture
the heterogeneity of all microglia phenotypes. Therefore, higher
resolution techniques such as single cell RNA sequencing are
necessary to determine the effects of lateral fluid percussion TBI
and SF on specific microglia sub clusters. While this study included
both male and female mice, more work is needed to determine if
post-injury SF influences gene signatures in a sex dependent manner.
Together, these data align with our previous work demonstrating
that environmental sleep disruption after TBI significantly influences
the neuroimmune response to injury. Continued effort is needed to
determine how post-injury sleep disruption shapes the microglial
response over time. Broadly, these results also lend support to
interventions aimed at mitigating chronic neuroinflammation after
TBI and improving long term outcome.
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